"배상수"의 두 판 사이의 차이

한양 위키
둘러보기로 가기 검색하러 가기
3번째 줄: 3번째 줄:
  
 
= 연구 =
 
= 연구 =
* '''<big>DNA 염기 하나만 바꾸는 유전자가위 규명(2019.9)</big>''' <ref><뉴스H> 2019.09.24 배상수 한양대 교수, DNA 염기 하나만 바꾸는 유전자가위 규명</ref>
+
==DNA 염기 하나만 바꾸는 유전자가위 규명(2019.9)<ref><뉴스H> 2019.09.24 배상수 한양대 교수, DNA 염기 하나만 바꾸는 유전자가위 규명</ref>==
*# 배 교수팀은 김진수 IBS 유전체 교정 연구단장과 공동연구를 통해 '아데닌 염기교정 유전자가위(Adenine Base Editor)' 가 특정한 위치에서 시토신 염기를 바꿀 수 있다는 사실을 최초로 입증했다. 아데닌 염기교정 유전자가위의 새로운 기능이 확인됨에 따라 향후 새로운 유전자가위 활용의 길이 열릴 것으로 기대된다.
+
# 배 교수팀은 김진수 IBS 유전체 교정 연구단장과 공동연구를 통해 '아데닌 염기교정 유전자가위(Adenine Base Editor)' 가 특정한 위치에서 시토신 염기를 바꿀 수 있다는 사실을 최초로 입증했다. 아데닌 염기교정 유전자가위의 새로운 기능이 확인됨에 따라 향후 새로운 유전자가위 활용의 길이 열릴 것으로 기대된다.
*# 인간 유전체 상의 다양한 타깃을 선정해 아데닌 염기교정 유전자가위를 처리한 후 DNA 시퀀싱을 통해 이를 분석했다. 그 결과 인간 유전체 22개 중 2개가 아데닌이 아닌 시토신이 치환되는 것을 확인됐고, 추가적인 연구를 통해 구아닌·티민 등으로도 바뀔 수 있다는 점을 확인했다.
+
# 인간 유전체 상의 다양한 타깃을 선정해 아데닌 염기교정 유전자가위를 처리한 후 DNA 시퀀싱을 통해 이를 분석했다. 그 결과 인간 유전체 22개 중 2개가 아데닌이 아닌 시토신이 치환되는 것을 확인됐고, 추가적인 연구를 통해 구아닌·티민 등으로도 바뀔 수 있다는 점을 확인했다.
*# 기초과학연구원(IBS) 유전체 교정 연구단과 공동으로 진행한 이번 연구결과(논문명 : Adenine base editors catalyze cytosine conversions in human cells)는 「네이처 바이오테크놀로지(Nature Biotechnology), IF=35.724」 24일에 온라인 게재됐다.
+
# 기초과학연구원(IBS) 유전체 교정 연구단과 공동으로 진행한 이번 연구결과(논문명 : Adenine base editors catalyze cytosine conversions in human cells)는 「네이처 바이오테크놀로지(Nature Biotechnology), IF=35.724」 24일에 온라인 게재됐다.
  
* '''<big>유전자 교정기술 핵심 단백질 절단 메커니즘 규명(2018.7.24)</big>'''
+
==유전자 교정기술 핵심 단백질 절단 메커니즘 규명(2018.07.24)==
*# GIST는 배상수 교수팀, 광주과학기술원(GIST) 고등광기술연구소 이상화 박사 연구팀, 한국과학기술연구원(KIST) 테라그노시스 연구단 정철현 박사팀이 공동으로 크리스퍼(CRISPR) 기반 유전자 교정기술의 핵심 단백질 중 하나인 Cas12a의 DNA 표적 탐색 및 절단 메커니즘을 규명했다고 밝혔다. 단일분자 형광 이미징 기술을 이용해 새로운 크리스퍼 기반 기술들의 핵심 단백질 중 하나인 Cas12a(또는 Cpf1)가 표적 DNA를 탐색하고 절단하는 전 과정을 실시간으로 관찰하는데 성공한 것. 크리스퍼 유전자 가위를 이용한 유전자 교정기술은 유전자 치료, 새로운 식물 육종 개발 등 다양한 분야에 폭넓게 이용 및 빠르게 발전하고 있으며, 대표적으로 Cas9 유전자 가위가 사용되고 있다. 하지만 일반적으로 크리스퍼 유전자 가위는 표적 DNA와 유사한 염기서열을 가진 DNA까지도 자르는 표적이탈효과(off-target) 및 전체 유전체 내 작동가능한 표적이 제한되는 문제 등이 한계로 지적되고 있다. 이러한 기술적 한계를 극복하기 위해 최근에는 다양한 변종 단백질을 발굴 및 개발하여 유전자 교정기술을 향상하고자 노력하고 있다. 그 중에서도 Cas12a 단백질은 Cas9에 비해 표적 특이성이 높다고 알려져 있어 크게 각광받고 있다. 때문에 Cas12a의 상대적으로 높은 표적 특이성을 이해하고 보다 향상된 유전자 가위를 개발하기 위해서는 Cas12a의 표적 탐색 및 절단 메커니즘을 규명하는 연구가 필요하다.<br />배상수 교수 공동 연구팀은 이번 연구에서 단일분자 형광 이미징 기술을 이용해 Cas12a의 표적 탐색 및 절단의 전 과정을 실시간으로 관찰하는데 성공했다. 이를 통해 Cas12a 단백질이 긴 DNA 상에서 1차원 확산 운동을 통해 특정 표적을 탐색하고, 표적 DNA와 만나 안정된 결합을 한 후, 비표적 가닥과 표적 가닥 순서로 시간 차를 두고 순차적으로 절단한다는 사실을 세계 최초로 규명했다. <br />배상수 교수(한양대, 공동교신저자), 이상화 박사(GIST, 공동교신저자), 정철현 박사(KIST, 공동교신저자) 등이 주도한 본 연구는 한국연구재단 기초연구사업, 보건복지부 암정복추진연구개발사업, 농촌진흥청 차세대 바이오그린 21사업, GIST 개발과제 및 KIST 기관고유사업 등의 지원을 받아 수행됐으며, 네이처 자매지인 네이처 커뮤니케이션즈(Nature Communications, IF 12.353)에 7월 17일(화) 온라인판에 게재됐다.
+
# GIST는 배상수 교수팀, 광주과학기술원(GIST) 고등광기술연구소 이상화 박사 연구팀, 한국과학기술연구원(KIST) 테라그노시스 연구단 정철현 박사팀이 공동으로 크리스퍼(CRISPR) 기반 유전자 교정기술의 핵심 단백질 중 하나인 Cas12a의 DNA 표적 탐색 및 절단 메커니즘을 규명했다고 밝혔다. 단일분자 형광 이미징 기술을 이용해 새로운 크리스퍼 기반 기술들의 핵심 단백질 중 하나인 Cas12a(또는 Cpf1)가 표적 DNA를 탐색하고 절단하는 전 과정을 실시간으로 관찰하는데 성공한 것. 크리스퍼 유전자 가위를 이용한 유전자 교정기술은 유전자 치료, 새로운 식물 육종 개발 등 다양한 분야에 폭넓게 이용 및 빠르게 발전하고 있으며, 대표적으로 Cas9 유전자 가위가 사용되고 있다. 하지만 일반적으로 크리스퍼 유전자 가위는 표적 DNA와 유사한 염기서열을 가진 DNA까지도 자르는 표적이탈효과(off-target) 및 전체 유전체 내 작동가능한 표적이 제한되는 문제 등이 한계로 지적되고 있다. 이러한 기술적 한계를 극복하기 위해 최근에는 다양한 변종 단백질을 발굴 및 개발하여 유전자 교정기술을 향상하고자 노력하고 있다. 그 중에서도 Cas12a 단백질은 Cas9에 비해 표적 특이성이 높다고 알려져 있어 크게 각광받고 있다. 때문에 Cas12a의 상대적으로 높은 표적 특이성을 이해하고 보다 향상된 유전자 가위를 개발하기 위해서는 Cas12a의 표적 탐색 및 절단 메커니즘을 규명하는 연구가 필요하다.<br />배상수 교수 공동 연구팀은 이번 연구에서 단일분자 형광 이미징 기술을 이용해 Cas12a의 표적 탐색 및 절단의 전 과정을 실시간으로 관찰하는데 성공했다. 이를 통해 Cas12a 단백질이 긴 DNA 상에서 1차원 확산 운동을 통해 특정 표적을 탐색하고, 표적 DNA와 만나 안정된 결합을 한 후, 비표적 가닥과 표적 가닥 순서로 시간 차를 두고 순차적으로 절단한다는 사실을 세계 최초로 규명했다. <br />배상수 교수(한양대, 공동교신저자), 이상화 박사(GIST, 공동교신저자), 정철현 박사(KIST, 공동교신저자) 등이 주도한 본 연구는 한국연구재단 기초연구사업, 보건복지부 암정복추진연구개발사업, 농촌진흥청 차세대 바이오그린 21사업, GIST 개발과제 및 KIST 기관고유사업 등의 지원을 받아 수행됐으며, 네이처 자매지인 네이처 커뮤니케이션즈(Nature Communications, IF 12.353)에 7월 17일(화) 온라인판에 게재됐다.
  
 
= 수상 =
 
= 수상 =
17번째 줄: 17번째 줄:
 
=주석=
 
=주석=
 
<references />
 
<references />
 +
[[분류:자연과학대학]]
 +
[[분류:화학과]]

2020년 7월 24일 (금) 14:41 판

서울 자연과학대학 화학과 교수이다.

연구

DNA 염기 하나만 바꾸는 유전자가위 규명(2019.9)[1]

  1. 배 교수팀은 김진수 IBS 유전체 교정 연구단장과 공동연구를 통해 '아데닌 염기교정 유전자가위(Adenine Base Editor)' 가 특정한 위치에서 시토신 염기를 바꿀 수 있다는 사실을 최초로 입증했다. 아데닌 염기교정 유전자가위의 새로운 기능이 확인됨에 따라 향후 새로운 유전자가위 활용의 길이 열릴 것으로 기대된다.
  2. 인간 유전체 상의 다양한 타깃을 선정해 아데닌 염기교정 유전자가위를 처리한 후 DNA 시퀀싱을 통해 이를 분석했다. 그 결과 인간 유전체 22개 중 2개가 아데닌이 아닌 시토신이 치환되는 것을 확인됐고, 추가적인 연구를 통해 구아닌·티민 등으로도 바뀔 수 있다는 점을 확인했다.
  3. 기초과학연구원(IBS) 유전체 교정 연구단과 공동으로 진행한 이번 연구결과(논문명 : Adenine base editors catalyze cytosine conversions in human cells)는 「네이처 바이오테크놀로지(Nature Biotechnology), IF=35.724」 24일에 온라인 게재됐다.

유전자 교정기술 핵심 단백질 절단 메커니즘 규명(2018.07.24)

  1. GIST는 배상수 교수팀, 광주과학기술원(GIST) 고등광기술연구소 이상화 박사 연구팀, 한국과학기술연구원(KIST) 테라그노시스 연구단 정철현 박사팀이 공동으로 크리스퍼(CRISPR) 기반 유전자 교정기술의 핵심 단백질 중 하나인 Cas12a의 DNA 표적 탐색 및 절단 메커니즘을 규명했다고 밝혔다. 단일분자 형광 이미징 기술을 이용해 새로운 크리스퍼 기반 기술들의 핵심 단백질 중 하나인 Cas12a(또는 Cpf1)가 표적 DNA를 탐색하고 절단하는 전 과정을 실시간으로 관찰하는데 성공한 것. 크리스퍼 유전자 가위를 이용한 유전자 교정기술은 유전자 치료, 새로운 식물 육종 개발 등 다양한 분야에 폭넓게 이용 및 빠르게 발전하고 있으며, 대표적으로 Cas9 유전자 가위가 사용되고 있다. 하지만 일반적으로 크리스퍼 유전자 가위는 표적 DNA와 유사한 염기서열을 가진 DNA까지도 자르는 표적이탈효과(off-target) 및 전체 유전체 내 작동가능한 표적이 제한되는 문제 등이 한계로 지적되고 있다. 이러한 기술적 한계를 극복하기 위해 최근에는 다양한 변종 단백질을 발굴 및 개발하여 유전자 교정기술을 향상하고자 노력하고 있다. 그 중에서도 Cas12a 단백질은 Cas9에 비해 표적 특이성이 높다고 알려져 있어 크게 각광받고 있다. 때문에 Cas12a의 상대적으로 높은 표적 특이성을 이해하고 보다 향상된 유전자 가위를 개발하기 위해서는 Cas12a의 표적 탐색 및 절단 메커니즘을 규명하는 연구가 필요하다.
    배상수 교수 공동 연구팀은 이번 연구에서 단일분자 형광 이미징 기술을 이용해 Cas12a의 표적 탐색 및 절단의 전 과정을 실시간으로 관찰하는데 성공했다. 이를 통해 Cas12a 단백질이 긴 DNA 상에서 1차원 확산 운동을 통해 특정 표적을 탐색하고, 표적 DNA와 만나 안정된 결합을 한 후, 비표적 가닥과 표적 가닥 순서로 시간 차를 두고 순차적으로 절단한다는 사실을 세계 최초로 규명했다.
    배상수 교수(한양대, 공동교신저자), 이상화 박사(GIST, 공동교신저자), 정철현 박사(KIST, 공동교신저자) 등이 주도한 본 연구는 한국연구재단 기초연구사업, 보건복지부 암정복추진연구개발사업, 농촌진흥청 차세대 바이오그린 21사업, GIST 개발과제 및 KIST 기관고유사업 등의 지원을 받아 수행됐으며, 네이처 자매지인 네이처 커뮤니케이션즈(Nature Communications, IF 12.353)에 7월 17일(화) 온라인판에 게재됐다.

수상

  • 2019년 1월 ‘국가연구개발 성과평가 유공포상 수여식’서 장관 표창 [2]
  • 2019년, '2019년도 국내 5대 바이오 연구성과 TOP 5' 생명과학 부문에 선정[3]

주석

  1. <뉴스H> 2019.09.24 배상수 한양대 교수, DNA 염기 하나만 바꾸는 유전자가위 규명
  2. <뉴스H> 2019.01.15 한양대 이동윤‧배상수 교수 국무총리‧장관 표창
  3. 사랑한대매거진252