"임종우(공과대학)"의 두 판 사이의 차이

한양 위키
둘러보기로 가기 검색하러 가기
19번째 줄: 19번째 줄:
 
=== 알고리즘을 통해 동영상 내 사람이나 사물의 위치를 정확하게 추적하다([[이달의연구자]] 2019.05)<ref><뉴스H> 2019.05.01 임종우 교수(컴퓨터소프트웨어학부)</ref>===
 
=== 알고리즘을 통해 동영상 내 사람이나 사물의 위치를 정확하게 추적하다([[이달의연구자]] 2019.05)<ref><뉴스H> 2019.05.01 임종우 교수(컴퓨터소프트웨어학부)</ref>===
 
* 임 교수는 찾고자 하는 물체의 위치 정확성을 높이기 위해 중요도가 높은 층의 가중치를 자동으로 조절하는 알고리즘을 개발했다. 기존 물체 추적 기술에서 정확성을 높인 임 교수의 ‘Hedging Deep Features for Visual Tracking’ 연구는 패턴인식 및 인공지능 분야의 최고 권위 학술지인 국제전기전자공학회(IEEE)가 발행하는 ‘IEEE TPAMI(Transactions on Pattern Analysis and Machine Intelligence)’지에 게재됐다.
 
* 임 교수는 찾고자 하는 물체의 위치 정확성을 높이기 위해 중요도가 높은 층의 가중치를 자동으로 조절하는 알고리즘을 개발했다. 기존 물체 추적 기술에서 정확성을 높인 임 교수의 ‘Hedging Deep Features for Visual Tracking’ 연구는 패턴인식 및 인공지능 분야의 최고 권위 학술지인 국제전기전자공학회(IEEE)가 발행하는 ‘IEEE TPAMI(Transactions on Pattern Analysis and Machine Intelligence)’지에 게재됐다.
* 임 교수는 중요도가 높은 층의 가중치를 높여 물체의 위치 정확성을 높이는 헤징(Hedging)을 여러 층의 정보를 융합하는 데 적용하자고 제안했다. 기존에는 새 프레임이 입력되면 CNN 각 층에서 연관성 필터(Correlation filter)를 이용해 해당 층의 특징으로 위치를 추정했다. 임 교수의 알고리즘을 연구에 적용하면 지금까지의 각 층의 결과를 기억하여 현재 프레임에서 효과적인 층을 선택할 수 있도록 각 층의 가중치를 자동으로 조절할 수 있게 된다. 또한 물체의 크기가 변하는 상황을 대비해 규모 검색 단계(Scale search step)를 추가했다.
+
* 임 교수는 중요도가 높은 층의 가중치를 높여 물체의 위치 정확성을 높이는 헤징(Hedging)을 여러 층의 정보를 융합하는 데 적용하자고 제안했다. 기존에는 새 프레임이 입력되면 CNN 각 층에서 연관성 필터(Correlation filter)를 이용해 해당 층의 특징으로 위치를 추정했다.  
* 임 교수는 하얼빈공업대학(Harbin Institute of Technology) 연구진과 캘리포니아 대학교(The University of California, Merced) 양밍 호앙(Ming-hsuan Yang) 박사와 딥러닝(Deep learning)에서 학습한 시각적 특징을 물체 추적에 활용하는 기법을 찾다가 이번 연구를 시작하게 됐다. 이번 연구는 임 교수가 2016년에 발표한 헤징 딥 트랙킹(Hedged deep tracking)을 확장한 결과다. 이전에는 각 층에서 얻어진 위치 정보를 단순한 방법으로 융합하는 방식이었다면, 올해는 헤징 기법으로 이용하여 각 층의 특징을 선택적으로 융합했다.
+
* 임 교수는 하얼빈공업대학(Harbin Institute of Technology) 연구진과 캘리포니아 대학교(The University of California, Merced) 양밍 호앙(Ming-hsuan Yang) 박사와 딥러닝(Deep learning)에서 학습한 시각적 특징을 물체 추적에 활용하는 기법을 찾다가 이번 연구를 시작하게 됐다. 이번 연구는 임 교수가 2016년에 발표한 헤징 딥 트랙킹(Hedged deep tracking)을 확장한 결과다.
 
=== 사물과 사람 추적 기술 ===
 
=== 사물과 사람 추적 기술 ===
 
   인천국제공항에 설치된 1만 개의 CCTV에서 특정 물체를 찾을 때, 사람의 눈으로 확인하려면 많은 시간이 걸린다. 중요도가 높은 층에 더 많은 가중치를 자동으로 부여하는 새로운 물체추적기술인 ‘헤징(Hedging)’ 알고리즘을 적용함으로써 정확도와 신뢰도를 높였다.<ref><출처> 중앙일보 2019. 8. 12 대한민국 인재 산실, 한양대 80년 기사 중에서</ref>
 
   인천국제공항에 설치된 1만 개의 CCTV에서 특정 물체를 찾을 때, 사람의 눈으로 확인하려면 많은 시간이 걸린다. 중요도가 높은 층에 더 많은 가중치를 자동으로 부여하는 새로운 물체추적기술인 ‘헤징(Hedging)’ 알고리즘을 적용함으로써 정확도와 신뢰도를 높였다.<ref><출처> 중앙일보 2019. 8. 12 대한민국 인재 산실, 한양대 80년 기사 중에서</ref>

2020년 7월 24일 (금) 16:20 판

임종우 교수

임종우는 서울캠퍼스 공과대학 컴퓨터소프트웨어학부 (대학원 컴퓨터·소프트웨어학과)교수이다.

  • 전화번호 : 02-2220-2376
  • 이메일 : jlim@hanyang.ac.kr / jongwoo.lim@gmail.com
  • 주소 : ITBT관 505호

학력 및 경력

  • 2012.03~, Assistant professor, Division of Computer Science & Engineering at Hanyang Univ.
  • 2011 ~ 2012, Google inc., Software Engineer in StreetView team, main developers of Google Business View
  • 2005 ~ 2011, Honda Research Institute USA as a Senior Scientist, robot vision problems
  • 2002 ~ 2005, UCSD (kriegman-grp)
  • 2000 ~ 2005.12, graduate student of Computer Science dept of UIUC, advised by prof. David Kriegman
  • 1997.02, B.S. degree from Department of Computer Science, Seoul National Univ.
  • 1993, 서울과학고등학교 졸업

교내동정

연구분야

알고리즘을 통해 동영상 내 사람이나 사물의 위치를 정확하게 추적하다(이달의연구자 2019.05)[1]

  • 임 교수는 찾고자 하는 물체의 위치 정확성을 높이기 위해 중요도가 높은 층의 가중치를 자동으로 조절하는 알고리즘을 개발했다. 기존 물체 추적 기술에서 정확성을 높인 임 교수의 ‘Hedging Deep Features for Visual Tracking’ 연구는 패턴인식 및 인공지능 분야의 최고 권위 학술지인 국제전기전자공학회(IEEE)가 발행하는 ‘IEEE TPAMI(Transactions on Pattern Analysis and Machine Intelligence)’지에 게재됐다.
  • 임 교수는 중요도가 높은 층의 가중치를 높여 물체의 위치 정확성을 높이는 헤징(Hedging)을 여러 층의 정보를 융합하는 데 적용하자고 제안했다. 기존에는 새 프레임이 입력되면 CNN 각 층에서 연관성 필터(Correlation filter)를 이용해 해당 층의 특징으로 위치를 추정했다.
  • 임 교수는 하얼빈공업대학(Harbin Institute of Technology) 연구진과 캘리포니아 대학교(The University of California, Merced) 양밍 호앙(Ming-hsuan Yang) 박사와 딥러닝(Deep learning)에서 학습한 시각적 특징을 물체 추적에 활용하는 기법을 찾다가 이번 연구를 시작하게 됐다. 이번 연구는 임 교수가 2016년에 발표한 헤징 딥 트랙킹(Hedged deep tracking)을 확장한 결과다.

사물과 사람 추적 기술

 인천국제공항에 설치된 1만 개의 CCTV에서 특정 물체를 찾을 때, 사람의 눈으로 확인하려면 많은 시간이 걸린다. 중요도가 높은 층에 더 많은 가중치를 자동으로 부여하는 새로운 물체추적기술인 ‘헤징(Hedging)’ 알고리즘을 적용함으로써 정확도와 신뢰도를 높였다.[2]

비전 모델 기반 공간 상황 인지 원천기술 연구(이달의연구자 2019.09)[3]

  • 알고리즘 방식과 딥러닝 방식을 융합하여 연구
  • 주요 연구 대상 : 자율주행 자동차와 CCTV 등에 활용될 컴퓨터 비전[4]
    • 예) 차가 주행하는 동안 다양하게 변하는 주위 공간을 3차원으로 인식하는 기술
  • 기존 물체 추적 기술에서 정확성을 높인 기술 ‘Hedging Deep Features for Visual Tracking’ 연구는 패턴인식 및 인공지능 분야의 최고 권위 학술지인 국제전기전자공학회(IEEE)가 발행하는 ‘IEEE TPAMI(Transactions on Pattern Analysis and Machine Intelligence)’지에 게재

수상/선정

  • 삼성이 발표한 2016년도 미래기술육성사업(삼성미래기술육성사업) 12개 과제중 하나로 선정 (2016. 7. 11 발표)
    • 스마트 기기를 위한 인공지능 분야 : 도심의 혼잡한 환경에서의 자율 주행을 위한 전방향 비전 기반 지능형 상황 인식 기술

주요활동

  • Organization committee member of Korean Conference on Computer Vision 2014 (KCCV 2014)
  • Secretary of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016) at Daejeon
  • Area Chair of Asian Conference on Computer Vision 2014 (ACCV 2014)
  • Tutorial on “RGBD Image Processing for 3D Modeling and Texturing” at ICIP 2013 (Melbourne, Australia), with prof. Seungkyu Lee (Kyung Hee University) and Dr. Hwasup Lim (KIST)
  • Local chair of ACCV 2012, Daejeon, Korea

주요논문

  • Yi Wu, Jongwoo Lim*, Ming-Hsuan Yang, “Online Object Tracking: A Benchmark,” in CVPR 2013
  • Vivek Pradeep, Jongwoo Lim*, “Egomotion Estimation Using Assorted Features,” in International Journal of Computer Vision, Vol. 98, Issue 2, Page 202-216, June 2012
  • Jongwoo Lim, Jan-Michael Frahm, Marc Pollefeys, “Online Environment Mapping,” in CVPR 2011
  • David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang*, “Incremental Learning for Robust Visual Tracking,” in International Journal of Computer Vision (Special Issue: Learning for Vision), Vol. 77, No. 1-3, Pg. 125-141, May 2008
  • Benjamin Laxton, Jongwoo Lim, David Kriegman, “Leveraging temporal, contextual and ordering constraints for recognizing complex activities in video,” in CVPR 2007
  • Jongwoo Lim, Jeffrey Ho, Ming-hsuan Yang, David Kriegman, “Passive Photometric Stereo from Motion,” in ICCV 2005, vol. 2, pp. 1635 - 1642
  • Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David Kriegman, Serge Belongie, “Beyond Pairwise Clustering,” in CVPR 2005, vol. 2, pp. 838-845

주석

  1. <뉴스H> 2019.05.01 임종우 교수(컴퓨터소프트웨어학부)
  2. <출처> 중앙일보 2019. 8. 12 대한민국 인재 산실, 한양대 80년 기사 중에서
  3. <뉴스H> 2019.09.09 임종우 교수, 알고리즘과 딥러닝 방식을 융합해 컴퓨터 비전 향상
  4. 컴퓨터 비전이란 동영상과 이미지에서 필요한 정보를 추출하는 기술